Cart (Loading....) | Create Account
Close category search window
 

A two-layered wavelet-based algorithm for efficient lossless and lossy image compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marpe, D. ; Dept. of Image Process., Heinrich-Hertz-Inst. fur Nachrichtentech. Berlin GmbH, Germany ; Blattermann, G. ; Ricke, J. ; Maass, P.

In this paper, we propose a wavelet-based image-coding scheme allowing lossless and lossy compression, simultaneously. Our two-layered approach utilizes the best of two worlds: it uses a highly performing wavelet-based or wavelet packet-based coding technique for lossy compression in the low bit range as a first stage. For the second (optional) stage, we extend the concept of reversible integer wavelet transforms to the more flexible class of adaptive reversible integer wavelet packet transforms which are based on the generation of a whole library of bases, from which the best representation for a given residue between the reconstructed lossy compressed image and the original image is chosen using a fast-search algorithm. We present experimental results demonstrating that our compression algorithm yields a rate-distortion performance similar or superior to the best currently published pure lossy still image-coding methods. At the same time, the lossless compression performance of our two-layered scheme is comparable to that of state-of-the-art pure lossless image-coding schemes. Compared to other combined lossy/lossless coding schemes such as the emerging JPEG-2000 still image-coding standard PSNR improvements up to 3 dB are achieved for a set of standard test images

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:10 ,  Issue: 7 )

Date of Publication:

Oct 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.