By Topic

A new approach to spectral estimation: a tunable high-resolution spectral estimator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. L. Byrnes ; Dept. of Syst. Sci. & Math., Washington Univ., St. Louis, MO, USA ; T. T. Georgiou ; A. Lindquist

Traditional maximum entropy spectral estimation determines a power spectrum from covariance estimates. Here, we present a new approach to spectral estimation, which is based on the use of filter banks as a means of obtaining spectral interpolation data. Such data replaces standard covariance estimates. A computational procedure for obtaining suitable pole-zero (ARMA) models from such data is presented. The choice of the zeros (MA-part) of the model is completely arbitrary. By suitable choices of filter bank poles and spectral zeros, the estimator can be tuned to exhibit high resolution in targeted regions of the spectrum

Published in:

IEEE Transactions on Signal Processing  (Volume:48 ,  Issue: 11 )