By Topic

Blind digital signal separation using successive interference cancellation iterative least squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Li ; Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA ; Sidiropoulos, N.D.

Blind separation of instantaneous linear mixtures of digital signals is a basic problem in communications. When little or nothing can be assumed about the mixing matrix, signal separation may be achieved by exploiting structural properties of the transmitted signals, e.g., finite alphabet or coding constraints. We propose a monotonically convergent and computationally efficient iterative least squares (ILS) blind separation algorithm based on an optimal scaling lemma. The signal estimation step of the proposed algorithm is reminiscent of successive interference cancellation (SIC) ideas. For well-conditioned data and moderate SNR, the proposed SIC-ILS algorithm provides a better performance/complexity tradeoff than competing ILS algorithms. Coupled with blind algebraic digital signal separation methods, SIC-ILS offers a computationally inexpensive true least squares refinement option. We also point out that a widely used ILS finite alphabet blind separation algorithm can exhibit limit cycle behavior

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 11 )