By Topic

Universal HSPICE macromodel for giant magnetoresistance memory bits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. Das ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; W. C. Black ; A. V. Pohm

Nonvolatile semiconductor storage using giant magnetoresistance (GMR) memory bits has the potential for revolutionizing both high-density and high-speed memory applications with devices exhibiting unlimited write endurance and very low write energy. This paper presents the first universal circuit macromodel for GMR memory bits. The macromodel is realized as a four-terminal subcircuit that emulates GMR bit behavior over a wide range of sense and word-line currents. It realistically models the nonlinear and hysteretic behavior of GMR memory bits, their transient thermal behavior, and the sense-current dependency of their write thresholds. The model is flexible and relatively simple: Ranges of the write/read currents and bit resistance values are incorporated as parameterized variables, and no semiconductor devices are used within the model

Published in:

IEEE Transactions on Magnetics  (Volume:36 ,  Issue: 4 )