By Topic

A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Athanasiadou, G.E. ; Bristol Univ., UK ; Nix, A.R.

A novel three-dimensional (3-D) ray-tracing model capable of supporting detailed representation of the indoor environment, as well as external building structures, is presented in this paper. The developed algorithm uses a hybrid imaging technique where the two-dimensional (2-D) image generations in vertical and horizontal planes are combined to produce 3-D paths. It also employs the concept of “illumination zones” of the images which greatly simplifies the image map and allows the evaluation of complex indoor scenarios. In order to investigate the accuracy of the presented model, comparisons of predictions with narrow-band and wide-band measurements are performed in line-of-sight (LOS), non-LOS (NLOS), and deep shadow areas, both for co- and cross-polarized antennas. The analysis shows that accurate power predictions can be achieved for both antenna polarizations with rms errors less than 7 dB, even when long sections of the test route are in deep shadow areas. There is a trend agreement between the simulated and measured channel impulse responses, while the rms delay spread in NLOS areas is predicted with less than 5-ns rms error (or better than 13% normalized mean error). The paper provides an insight into the real and the modeled radio channel

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:49 ,  Issue: 4 )