By Topic

ASP: a cost-effective parallel microcomputer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lea, R.M. ; Dept. of Electr. Eng. & Electron., Brunel Univ., Uxbridge, UK

The author presents ASP architecture, which offers cost-effective support of a wide range of numerical and nonnumerical computing applications, using state-of-the-art microelectronic technology to achieve processor packing densities that are more usually associated with memory components, ASP is designed to benefit from the inevitable VLSI-to-ULSI-to-WSI (very large, ultra large, and wafer-scale integration) technological trend, with a fully integrated, simply scalable, and defect/fault-tolerant processor interconnection strategy. The author discusses the architectural philosophy, structural organization, operational principles, and VLSI/ULSI/WSI implementation of ASP and indicates its cost-performance potential. ASP microcomputers have the potential to achieve cost-performance targets in the range of 100 to 1000 MOPS (million operations per second) per $1000. This gives ASPs an advantage of two to three orders of magnitude over current parallel computer architectures.<>

Published in:

Micro, IEEE  (Volume:8 ,  Issue: 5 )