By Topic

Summarizing video datasets in the spatiotemporal domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Stefanidis ; Dept. of Spatial Inf. Eng., Maine Univ., Orono, ME, USA ; P. Partsinevelos ; P. Agouris ; P. Doucette

We address the problem of analyzing and managing complex dynamic scenes captured in video. We present an approach to summarize video datasets by analyzing the trajectories of objects within them. Our work is based on the identification of nodes in these trajectories as critical points that describe the behavior of an object over a video segment. The time instances that correspond to these nodes are used to select critical frames for a video summary that describes adequately and concisely an object's behavior within a video segment. The analysis of relative positions of objects of interest within the video feed may dictate the selection of additional critical frames, to ensure the separability of converging trajectories. The paper presents a framework for video summarization using this approach, and addresses the use of self-organizing maps to identify trajectory nodes

Published in:

Database and Expert Systems Applications, 2000. Proceedings. 11th International Workshop on

Date of Conference: