By Topic

Lithographic tuning of a two-dimensional photonic crystal laser array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Painter, O. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Husain, A. ; Scherer, A. ; Lee, P.T.
more authors

One attraction of photonic crystals is the ability to control optical device characteristics by lithographically varying the geometry. In this letter, we demonstrate a 10/spl times/10 array of optically pumped two-dimensional (2-D) photonic crystal defect lasers with varying lattice parameters. By adjusting the photonic crystal interhole spacing as well as the hole diameter we are able to tune the laser wavelength from 1500 to 1625 nm on a monolithic InP-InGaAsP wafer. A wavelength resolution of 10 nm from device to device was obtainable, limited by the lithography and etching tolerances of our fabrication method.

Published in:

Photonics Technology Letters, IEEE  (Volume:12 ,  Issue: 9 )