By Topic

Hierarchical defect-oriented fault simulation for digital circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Blyzniuk, M. ; State Univ. Lvivska Politechnika, Poland ; Cibakova, T. ; Gramatova, E. ; Kuzmicz, W.
more authors

A new fault model is developed for estimating the coverage of physical defects in digital circuits for given test sets. Based on this model, a new hierarchical defect oriented fault simulation method is proposed. At the higher level simulation we use the functional fault model, at the lower level we use the defect/fault relationships in the form of defect coverage table and the defect probabilities. A description and the experimental data are given about probabilistic analysis of a complex CMOS gate. Analysis of the quality of 100% stuck-at fault test sets for two benchmark circuits in covering physical defects like internal shorts, stuck-opens and stuck-ons. It has been shown that in the worst case a test with 100% stuck-at fault coverage may, have only 50% coverage for internal shorts in complex CMOS gates. It has been shown that classical test coverage calculation based on counting defects without taking into account the defect probabilities may lead to considerable overestimation of results

Published in:

Test Workshop, 2000. Proceedings. IEEE European

Date of Conference: