By Topic

Improving learning accuracy of fuzzy decision trees by hybrid neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsang, E.C.C. ; Dept. of Comput., Hong Kong Polytech., Kowloon, China ; Wang, X.Z. ; Yeung, D.S.

Although the induction of fuzzy decision tree (FDT) has been a very popular learning methodology due to its advantage of comprehensibility, it is often criticized to result in poor learning accuracy. Thus, one fundamental problem is how to improve the learning accuracy while the comprehensibility is kept. This paper focuses on this problem and proposes using a hybrid neural network (HNN) to refine the FDT. This HNN, designed according to the generated FDT and trained by an algorithm derived in this paper, results in a FDT with parameters, called weighted FDT. The weighted FDT is equivalent to a set of fuzzy production rules with local weights (LW) and global weights (GW) introduced in our previous work (1998). Moreover, the weighted FDT, in which the reasoning mechanism incorporates the trained LW and GW, significantly improves the FDTs' learning accuracy while keeping the FDT comprehensibility. The improvements are verified on several selected databases. Furthermore, a brief comparison of our method with two benchmark learning algorithms, namely, fuzzy ID3 and traditional backpropagation, is made. The synergy between FDT induction and HNN training offers new insight into the construction of hybrid intelligent systems with higher learning accuracy

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:8 ,  Issue: 5 )