By Topic

New approaches to relaxed quadratic stability condition of fuzzy control systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Euntai Kim ; Dept. of Control & Instrum. Eng., Hankyong Nat. Univ., South Korea ; Heejin Lee

This paper deals with the quadratic stability conditions of fuzzy control systems that relax the existing conditions reported in the previous literatures. Two new conditions are proposed and shown to be useful in analyzing and designing fuzzy control systems. The first one employs the S-procedure to utilize information regarding the premise parts of the fuzzy systems. The next one enlarges the class of fuzzy control systems, whose stability is ensured by representing the interactions among the fuzzy subsystems in a single matrix and solving it by linear matrix inequality. The relationships between the suggested stability conditions and the conventional well-known stability conditions reported in the previous literatures are also discussed, and it is shown in a rigorous manner that the second condition of this paper includes the conventional conditions. Finally, some examples and simulation results are presented to illustrate the effectiveness of the stability conditions

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:8 ,  Issue: 5 )