By Topic

GA-fuzzy modeling and classification: complexity and performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Setnes ; Control Lab., Delft Univ. of Technol., Netherlands ; H. Roubos

The use of genetic algorithms (GAs) and other evolutionary optimization methods to design fuzzy rules for systems modeling and data classification have received much attention in recent literature. Authors have focused on various aspects of these randomized techniques, and a whole scale of algorithms have been proposed. We comment on some recent work and describe a new and efficient two-step approach that leads to good results for function approximation, dynamic systems modeling and data classification problems. First, fuzzy clustering is applied to obtain a compact initial rule-based model. Then this model is optimized by a real-coded GA subjected to constraints that maintain the semantic properties of the rules. We consider four examples from the literature: a synthetic nonlinear dynamic systems model, the iris data classification problem, the wine data classification problem, and the dynamic modeling of a diesel engine turbocharger. The obtained results are compared to other recently proposed methods

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:8 ,  Issue: 5 )