By Topic

Theoretical aspects of gray-level morphology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Heijmans, H.J.A.M. ; Centre for Math. & Comput. Sci., Amsterdam, Netherlands

After a brief discussion of the extension of mathematical morphology to complete lattices, the space of gray-level functions is considered and the concept of a threshold set is introduced. It is shown how one can use binary morphological operators and thresholding techniques to build a large class of gray-level morphological operators. Particular attention is given to the class of so-called flat operators, i.e. operators which commute with thresholding. It is also shown how to define dilations and erosions with nonflat structuring elements if the gray-level set is finite. It is reported that mere truncation yields wrong results

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 6 )