By Topic

Estimating the kinematics and structure of a rigid object from a sequence of monocular images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Broida, Ted J. ; Hughes Aircraft Co., Los Angeles, CA, USA ; Chellappa, R.

The problem considered involves the use of a sequence of noisy monocular images of a three-dimensional moving object to estimate both its structure and kinematics. The object is assumed to be rigid, and its motion is assumed to be smooth. A set of object match points is assumed to be available, consisting of fixed features on the object, the image plane coordinates of which have been extracted from successive images in the sequence. Structure is defined as the 3-D positions of these object feature points, relative to each other. Rotational motion occurs about the origin of an object-centered coordinate system, while translational motion is that of the origin of this coordinate system. In this work, which is a continuation of the research done by the authors and reported previously (ibid., vol.PAMI-8, p.90-9, Jan. 1986), results of an experiment with real imagery are presented, involving estimation of 28 unknown translational, rotational, and structural parameters, based on 12 images with seven feature points

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 6 )