Cart (Loading....) | Create Account
Close category search window

Reduced thermal strain in flip chip assembly on organic substrate using low CTE anisotropic conductive film

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Myung Jin Yim ; Dept. of Mater. Sci. & Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Young-Doo Jeon ; Kyung-Wook Paik

Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances, resulting in a high performance and cost-competitive packaging method. This paper describes the usefulness of low cost flip-chip assembly using electroless Ni/Au bump and anisotropic conductive films on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed as a low cost bumping method. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with Ni3P precipitation above 300°C causes an increase of hardness and an increase of the intrinsic stress. As interconnection material, modified ACFs composed of nickel conductive fillers for conductive fillers, and nonconductive fillers for modification of film properties, such as coefficient of thermal expansion (CTE), were formulated for improved electrical and mechanical properties of ACF interconnection. Three ACF materials with different CTE values were prepared and bonded between Si chips and FR-4 boards for the thermal strain measurement using moire interferometry. The thermal strain of the ACF interconnection layer, induced by temperature excursion of 80°C, was decreased according to the decreasing CTEs of ACF materials. This result indicates that the thermal fatigue life of ACF flip chip assembly on organic boards, limited by the thermal expansion mismatch between the chip and the board, could be increased by low CTE ACF

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:23 ,  Issue: 3 )

Date of Publication:

Jul 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.