Cart (Loading....) | Create Account
Close category search window

Comparative investigation of diagnostic media for induction motors: a case of rotor cage faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Trzynadlowski, A.M. ; Dept. of Electr. Eng., Nevada Univ., Reno, NV, USA ; Ritchie, E.

Results of a comparative experimental investigation of various media for noninvasive diagnosis of rotor faults in induction motors are presented. Stator voltages and currents in an induction motor were measured, recorded, and employed for computation of the partial and total input powers and of the estimated torque. Waveforms of the current, partial powers pAB and pCB, total power, and estimated torque were subsequently analyzed using the fast Fourier transform. Several rotor cage faults of increasing severity were studied with various load levels. The partial input power pCB was observed to exhibit the highest sensitivity to rotor faults. This medium is also the most reliable, as it includes a multiplicity of fault-induced spectral components

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )

Date of Publication:

Oct 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.