By Topic

Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiang-Qun Liu ; Dept. of Autom. Control, Beijing Univ. of Aeronaut. & Astronaut., China ; Hong-Yue Zhang ; Jun Liu ; Jing Yang

In this paper, fault detection and diagnosis of a permanent-magnet DC motor is discussed. Parameter estimation based on block-pulse function series is used to estimate the continuous-time model of the motor. The electromechanical parameters of the motor can be obtained from the estimated model parameters. The relative changes of electromechanical parameters are used to detect motor faults. A multilayer perceptron neural network is used to isolate faults based on the patterns of parameter changes. Experiments with a real motor validate the feasibility of the combined use of parameter estimation and neural network classification for fault detection and isolation of the motor

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )