Cart (Loading....) | Create Account
Close category search window
 

Recent developments of induction motor drives fault diagnosis using AI techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Filippetti, F. ; Dept. of Electr. Eng., Bologna Univ., Italy ; Franceschini, G. ; Tassoni, C. ; Vas, P.

This paper presents a review of the developments in the field of diagnosis of electrical machines and drives based on artificial intelligence (AI). It covers the application of expert systems, artificial neural networks (ANNs), and fuzzy logic systems that can be integrated into each other and also with more traditional techniques. The application of genetic algorithms is considered as well. In general, a diagnostic procedure starts from a fault tree developed on the basis of the physical behavior of the electrical system under consideration. In this phase, the knowledge of well-tested models able to simulate the electrical machine in different fault conditions is fundamental to obtain the patterns characterizing the faults. The fault tree navigation performed by an expert system inference engine leads to the choice of suitable diagnostic indexes, referred to a particular fault, and relevant to build an input data set for specific AI (NNs, fuzzy logic, or neuro-fuzzy) systems. The discussed methodologies, that play a general role in the diagnostic field, are applied to an induction machine, utilizing as input signals the instantaneous voltages and currents. In addition, the supply converter is also considered to incorporate in the diagnostic procedure the most typical failures of power electronic components. A brief description of the various AI techniques is also given; this highlights the advantages and the limitations of using AI techniques. Some applications examples are also discussed and areas for future research are also indicated

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )

Date of Publication:

Oct 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.