Cart (Loading....) | Create Account
Close category search window

Statistically optimized minislot allocation for initial and collision resolution in hybrid fiber coaxial networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yin, Wei-Ming ; Dept. of Comput. & Inf. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Ying-Dar Lin

In a two-way hybrid fiber coaxial (HFC) network, the headend broadcasts in downstream channels, whereas all stations share the upstream channels. Hence, collision occurs when multiple stations send their bandwidth requests in a minislot. The headend determines how many minislots to allocate to manage collisions. This paper proposes a minislot allocation (SOMA) algorithm to optimize minislot throughput based on statistical estimation. A time proportional scheme is adopted to estimate the number of new requests in the initial resolution process. In addition, the number of retry requests in the collision resolution process is estimated by looking up a predetermined table of the most likely number of requests (MLR). In addition, SOMA is modified to reduce the request access delay by relaxing its allocation policy in a specific situation. We use a self-similar traffic model for simulation and analysis to compare SOMA with the optimal bound and the 3-ary tree algorithm.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 9 )

Date of Publication:

Sept. 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.