By Topic

Optimal finite-precision state-estimate feedback controller realizations of discrete-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Wu ; Nat. Lab. of Ind. Control Technol., Zhejiang Univ., Hangzhou, China ; Sheng Chen ; Gang Li ; Jian Chu

Investigates the stability issue of a discrete-time control system, where a state-estimate feedback controller (SEFC), digitally implemented with a fixed-point format, is used. A tractable closed-loop stability related measure is derived with finite-word-length implementation consideration of the controller. The optimal realizations of the SEFC are defined as those that maximize this measure and can be shown as the solutions of a nonlinear programming problem. A sophisticated optimization strategy is presented to provide an efficient method for solving this problem, and a numerical example is given to illustrate the design procedure

Published in:

Automatic Control, IEEE Transactions on  (Volume:45 ,  Issue: 8 )