By Topic

A noise annealing neural network for hydroelectric generation scheduling with pumped-storage units

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ruey-Hsun Liang ; Nat. Yunlin Univ. of Sci. & Technol., Taiwan, China

A new approach based on neural network is proposed for the hydroelectric generation scheduling with pumped-storage units at Taiwan power system. The purpose of hydroelectric generation scheduling is to determine the optimal amounts of generated powers for the hydro units in the system. To achieve an economical dispatching schedule for the hydro units including two large pumped-storage plants, a neural network is employed to reach a schedule in which total fuel cost of the thermal units over the study period is minimized. The neural network model presented can solve nonlinear constrained optimization problems with continuous decision variables. Incorporating the noise annealing concepts, the model is able to produce such a solution which is the global optimum of the original problem with probability close to 1. The proposed approach is applied to hydroelectric generation scheduling of Taiwan power system. It is concluded from the results that the proposed approach is very effective in reaching proper hydro generation schedules

Published in:

IEEE Transactions on Power Systems  (Volume:15 ,  Issue: 3 )