By Topic

A brain-controlled switch for asynchronous control applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mason, S.G. ; Neil Squire Found., Burnaby, BC, Canada ; Birch, G.E.

Asynchronous control applications are an important class of application that has not received much attention from the brain-computer interface (BCI) community. This work provides a design for an asynchronous BCI switch and performs the first extensive evaluation of an asynchronous device in attentive, spontaneous electroencephalographic (EEG) signals. The switch design [named the low-frequency asynchronous switch design (LF-ASD)] is based on a new feature set related to imaginary movements in the 1-4 Hz frequency range. This new feature set was identified from a unique analysis of EEG using a bi-scale wavelet. Offline evaluations of a prototype switch demonstrated hit (true positive) rates in the range of 38%-81% with corresponding false positive rates in the range of 0.3%-11.6%. The performance of the LF-ASD was contrasted with two other ASDs: one based on mu-power features and another based on the outlier processing method (OPM) algorithm. The minimum mean error rates for the LF-ASD were shown to be significantly lower than either of these other two switch designs

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 10 )