Cart (Loading....) | Create Account
Close category search window
 

A theoretical characterization of nonlinear distortion effects in OFDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dardari, D. ; CNIT DEIS, Bologna Univ., Italy ; Tralli, V. ; Vaccari, A.

This paper presents a theoretical characterization of nonlinear distortion effects in orthogonal frequency division multiplexing (OFDM) transmission systems. In the theoretical framework developed, it is shown that the effects on the decision variables of the in-band distortion introduced by a bandpass memoryless nonlinearity can be described by means of a complex gain and an additive Gaussian term with zero mean and suitable variance; analytical expressions for gain and variance are given. The conditions which allow this description are emphasized and discussed. As a consequence, a completely analytical procedure to evaluate error probability is also obtained and illustrated using OFDM/discrete multitone modulation (DMT) systems with rectangular pulse shaping; for the soft-envelope limiter nonlinearity, a closed form is derived. A comparison with simulation results is carried out to verify the accuracy of this method.

Published in:

Communications, IEEE Transactions on  (Volume:48 ,  Issue: 10 )

Date of Publication:

Oct 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.