By Topic

Performance benefits of hybrid control design for linear and nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mcclamroch, N.H. ; Dept. of Aerosp. Eng., Michigan Univ., Ann Arbor, MI, USA ; Kolmanovsky, I.

This paper provides an overview of recent developments on design of hybrid controllers for continuous-time control systems that can be described by linear or nonlinear differential state equations. Hybrid controllers provide a generalization of classical feedback controllers for linear and nonlinear systems. The benefit of hybrid controllers, that they can be used to achieve closed-loop performance objectives that cannot be achieved using classical linear or nonlinear controllers, is emphasized. This paper introduces hybrid controllers in the form of a switching control architecture and provides a summary of recently developed control approaches that utilize this control architecture. We provide a conceptual framework for these results, identify limitations of the results, and discuss the current status of hybrid control design approaches.

Published in:

Proceedings of the IEEE  (Volume:88 ,  Issue: 7 )