By Topic

Zone-branch reliability methodology for analyzing industrial power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Koval, D.O. ; Dept. of Electr. Eng., Alberta Univ., Edmonton, Alta., Canada

There are many methods available for evaluating the frequency and duration of load point interruptions within a given industrial power system configuration. As systems become larger and more interconnected, these existing methods can become computationally bound and limited in their ability to assess the impact of unreliable protective equipment and unreliable protection-coordination schemes on individual load point reliability indexes within a given plant configuration. These methods also can often not account for complex isolation and restoration procedures within an industrial plant configuration. This paper presents a zone-branch methodology that overcomes many of these limitations and applies the methodology to a large industrial plant power system configuration. The primary advantage of the zone-branch methodology is that it can readily identify faulty protection schemes involving all the components of an industrial power system and evaluate load point reliability indexes

Published in:

Industry Applications, IEEE Transactions on  (Volume:36 ,  Issue: 5 )