Cart (Loading....) | Create Account
Close category search window
 

An efficient algorithm for sample rate conversion from CD to DAT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajamani, K. ; Lucent Technol. Bell Labs., Holmdel, NJ, USA ; Yhean-Sen Lai ; Furrow, C.W.

This letter unveils an efficient algorithm for sampling rate conversion (SRC) technique from 44.1 kHz compact disc (CD) to 48 kHz digital audio tape (DAT). This method involves upsampling the input signal by two, and then passing the interpolated signal through a fractional delay filter that employs a simple decimation. This method can also be used for SRC from DAT to CD without changing the filter coefficients. The proposed algorithm is simulated in Matlab and can be implemented in a realtime digital signal processor (DSP). Compared with other existing methods, the proposed method has the advantage that it requires fewer million instructions per second (MIPS) and memory.

Published in:

Signal Processing Letters, IEEE  (Volume:7 ,  Issue: 10 )

Date of Publication:

Oct. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.