By Topic

Gate length scaling for Al0.2Ga0.8N/GaN HJFETs: two-dimensional full band Monte Carlo simulation including polarization effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Ando, Y. ; Photonic & Wireless Devices Res. Labs., NEC Corp., Otsu, Japan ; Contrata, W. ; Samoto, Norihiko ; Miyamoto, H.
more authors

Two-dimensional self-consistent full band Monte Carlo (FBMC) simulator was developed for electron transport in wurtzite phase AlGaN/GaN heterojunction (HJ) FET. Recessed gate Al0.2Ga0.8N/GaN HJFET structures with an undoped cap layer were simulated, where the spontaneous and piezoelectric polarization effects were taken into account. The polarization effect was shown to not only increase the current density, but also improve the carrier confinement, and hence improve the transconductance. An off-state drain breakdown voltage (BVds) of 300 V and a maximum linear output power (Pmax) of 46 W/mm were predicted for a 0.9-μm gate device. For a 0.1-μm gate device, 60 V BVds , 20 W/mm Pmax, and 160 GHz current-gain cutoff frequency were predicted. Although there is considerable uncertainty due to lack of information on the band structure, scattering rates, and surface conditions, the present results indicate a wide margin for improvements over current performance of AlGaN/GaN HJFETs in the future. To our knowledge, this is the first report on the FBMC simulation for AlGaN/GaN HJFETs

Published in:

Electron Devices, IEEE Transactions on  (Volume:47 ,  Issue: 10 )