By Topic

The new model of parallel genetic algorithm in multi-objective optimization problems - divided range multi-objective genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hiroyasu, T. ; Dept. of Knowledge Eng. & Comput. Sci., Doshisha Univ., Kyoto, Japan ; Miki, M. ; Watanabe, S.

Proposes a divided-range multi-objective genetic algorithm (DRMOGA), which is a model for the parallel processing of genetic algorithms (GAs) for multi-objective problems. In the DRMOGA, the population of GAs is sorted with respect to the values of the objective function and divided into sub-populations. In each sub-population, a simple GA for multi-objective problems is performed. After some generations, all the individuals are gathered and they are sorted again. In this model, the Pareto-optimal solutions which are close to each other are collected into one sub-population. Therefore, this algorithm increases the calculation efficiency and a neighborhood search can be performed. Through numerical examples, the following facts become clear: (i) the DRMOGA is a very suitable GA model for parallel processing, and (ii) in some cases it can derive better solutions compared to both the single-population model and the distributed model

Published in:

Evolutionary Computation, 2000. Proceedings of the 2000 Congress on  (Volume:1 )

Date of Conference: