By Topic

A hybrid intelligent active force controller for robot arms using evolutionary neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. B. Hussein ; Univ. Teknologi Malaysia, Malaysia ; H. Jamaluddin ; M. Mailah ; A. M. S. Zalzala

In this paper, we propose a hybrid intelligent parameter estimator for the active force control (AFC) scheme which utilizes evolutionary computation (EC) and artificial neural networks (ANN) to control a rigid robot arm. The EC part of the algorithm composes of a hybrid genetic algorithm (GA) and an evolutionary program (EP). The development of the controller is divided into two stages. In the first stage, which is performed off-line, the proposed EC algorithm is employed to evolve a pool of ANN structures until they converge to an optimum structure. The population is divided into different groups according to their fitness. The elitist group will not undergo any operation, while the second group, i.e. stronger group, undergoes the EP operation. Hence, the behavioral link between the parent and their offspring can be maintained. The weaker group undergoes a GA operation since their behaviors need to be changed more effectively in order to produce better offspring. In the second stage, the evolved ANN obtained from the first stage, which represent the optimum ANN structural design, is used to design the on-line intelligent parameter estimator to estimate the inertia matrix of the robot arm for the AFC controller. In this on-line stage, the ANN parameters, i.e. the weights and biases, are further trained using live data and back-propagation until a satisfactory result is obtained. The effectiveness of the proposed scheme is demonstrated through a simulation study performed on a two link planar manipulator operating in a horizontal plane. An external load is introduced to the manipulator to study the effectiveness of the proposed scheme

Published in:

Evolutionary Computation, 2000. Proceedings of the 2000 Congress on  (Volume:1 )

Date of Conference: