By Topic

Robust backstepping control of induction motors using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwan, C.M. ; Intelligent Autom. Inc., Rockville, MD, USA ; Lewis, F.L.

We present a new robust control technique for induction motors using neural networks (NNs). The method is systematic and robust to parameter variations. Motivated by the backstepping design technique, we first treat certain signals in the system as fictitious control inputs to a simpler subsystem. A two-layer NN is used in this stage to design the fictitious controller. We then apply a second two-layer NN to robustly realize the fictitious NN signals designed in the previous step. A new tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. A main advantage of our method is that it does not require regression matrices, so that no preliminary dynamical analysis is needed. Another salient feature of our NN approach is that the off-line learning phase is not needed. Full state feedback is needed for implementation. Load torque and rotor resistance can be unknown but bounded

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 5 )