By Topic

Soft sphere model for electron correlation and scattering in the atomistic modelling of semiconductor devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. R. Watling ; Dept. of Electron. & Electr. Eng., Glasgow Univ., UK ; J. R. Barker ; A. Asenov

The atomistic modelling of silicon MOSFET devices becomes essential at deep sub-micron scales when it is no longer possible to represent the charged impurities by a continuous charge distribution with a determined doping density. Instead the spatial distribution and the actual number of dopants must be treated as discrete random variables. The present paper addresses the issue of modelling the dynamics of discrete carrier flow in a semiconductor device utilising a simple model of the carrier-carrier scattering and carrier-fixed impurity scattering which is suitable for efficient simulations of large ensembles of devices.

Published in:

Computational Electronics, 2000. Book of Abstracts. IWCE Glasgow 2000. 7th International Workshop on

Date of Conference:

22-25 May 2000