Cart (Loading....) | Create Account
Close category search window

On load balancing in multicomputer/distributed systems equipped with circuit or cut-through switching capability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ching-Chih Han ; CreOSys Inc., Fremont, CA, USA ; Shin, K.G. ; Sang Kyun Yun

For multicomputer or distributed systems that use circuit switching, wormhole routing, or virtual cut-through (the last two are collectively called the cut-through switching), the communication overhead and the message delivery time depend largely upon link contention rather than upon the distance between the source and the destination. That is, a larger communication overhead or a longer delivery delay occurs to a message when it traverses a route with heavier traffic than the one with a longer distance and lesser traffic. This characteristic greatly affects the selection of routes for interprocessor communication and/or load balancing. We consider the load-balancing problem in these types of systems. Our objective is to find the maximum load imbalance that can be eliminated without violating the (traffic) capacity constraint and the route to eliminate the imbalance while keeping the maximum link traffic as low as possible. We investigate the load-balancing problem under various conditions. First, we consider the case in which the excess load on each overloaded node is divisible. We devise a network flow algorithm to solve this type of load balancing problem optimally in polynomial time. Next, we impose the realistic assumption that the system uses a specific routing scheme so that the excess load transferred from an overloaded node to an underloaded node must use the route found by the routing scheme. For this case, we use a graph transformation technique to transform the system graph to another graph to which the same network flow algorithm can be applied to solve the load balancing problem optimally. Finally, we consider the case in which the excess load on each overloaded node is indivisible, i.e., the excess load must be transferred as an entity. We show that the load-balancing problem of this type becomes NP-complete and propose a heuristic algorithm as a solution

Published in:

Computers, IEEE Transactions on  (Volume:49 ,  Issue: 9 )

Date of Publication:

Sep 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.