Cart (Loading....) | Create Account
Close category search window
 

A new class of sequential circuits with combinational test generation complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fujiwara, H. ; Graduate Sch. of Inf. Sci, Nara Inst. of Sci. & Technol., Japan

We introduce a new class of sequential circuits with combinational test generation complexity which we call internally balanced structures. It is shown that sequential circuits can be classified by their structure as follows: (sequential circuits of acyclic structure) ⊃ (sequential circuits of internally balanced structure) ⊃ (sequential circuits of balanced structure) and that internally balanced structures allow test generation with combinational test generation complexity. On the other hand, if finite state machines (FSMs) are classified by their realization possibility, it can be shown that (FSMs which can be realized as a sequential circuit of acyclic structure)=(FSMs which can be realized as a sequential circuit of internally balanced structure) ⊃ (FSMs which can be realized as a sequential circuit of balanced structure). Hence, any FSM realizable with acyclic structure can also be realized with internally balanced structure which allows test generation with combinational test generation complexity. In addition, we discuss the definition of test generation possibility with combinational test generation complexity and introduce a new definition which covers the previous narrow definition. Finally, we study applications to design for testability based on the partial scan and to test generation time reduction for sequential circuits in general, using characteristics of the internally balanced structures. The experimental results show the effectiveness of this approach

Published in:

Computers, IEEE Transactions on  (Volume:49 ,  Issue: 9 )

Date of Publication:

Sep 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.