By Topic

Robust fuzzy model-following control of robot manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih-Hsin Tsai ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chi-Hsiang Wang ; Wei-Song Lin

A robust fuzzy model-following control system is proposed for the control of robot manipulators. The application field to n-link robot manipulators with torque disturbance and measurement noise is addressed. The control objective is obtained by tailoring a nominal adaptation process of parameters to implement appropriate function approximation and facilitating a self-tuning mechanism on the consequent membership functions to overcome the equivalent uncertainty. A novel fuzzy system with self-tuning mechanism provides robust property and the rule-base in the form of “IF situation THEN the control input”. The proposed multilayer fuzzy logic controller can improve both transient and stability margins without a priori knowledge about the dynamic model or parameters of the robotic system. Using the Lyapunov stability method, the uniform ultimate boundedness of tracking error has been proved. The performance is demonstrated by simulating the control of a two-link robot in various situations

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:8 ,  Issue: 4 )