By Topic

Logic-based query optimization for object databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Grant, J. ; Dept. of Math. & Dept. of Comput. & Inf. Sci., Towson Univ., MD, USA ; Gryz, J. ; Minker, Jack ; Raschid, L.

We present a technique for transferring query optimization techniques, developed for relational databases, into object databases. We demonstrate this technique for ODMG database schemas defined in ODL and object queries expressed in OQL. The object schema is represented using a logical representation (Datalog). Semantic knowledge about the object data model, e.g., class hierarchy information, relationship between objects, etc., as well as semantic knowledge about a particular schema and application domain are expressed as integrity constraints. An OQL object query is represented as a logic query and query optimization is performed in the Datalog representation. We obtain equivalent (optimized) logic queries, and subsequently obtain equivalent (optimized) OQL queries for each equivalent logic query. We present one optimization technique for semantic query optimization (SQO) based on the residue technique of U. Charavarthy et al. (1990; 1986; 1988). We show that our technique generalizes previous research on SQO for object databases. We handle a large class of OQL queries, including queries with constructors and methods. We demonstrate how SQO can be used to eliminate queries which contain contradictions and simplify queries, e.g., by eliminating joins, or by reducing the access scope for evaluating a query to some specific subclass(es). We also demonstrate how the definition of a method or integrity constraints describing the method, can be used in optimizing a query with a method

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:12 ,  Issue: 4 )