By Topic

Model-based despeckling and information extraction from SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Walessa ; IMF, German Aerosp. Res. Establ., Oberpfaffenhofen, Germany ; M. Datcu

Basic textures as they appear, especially in high resolution SAR images, are affected by multiplicative speckle noise and should be preserved by despeckling algorithms. Sharp edges between different regions and strong scatterers also must be preserved. To despeckle images, the authors use a maximum aposteriori (MAP) estimation of the cross section, choosing between different prior models. The proposed approach uses a Gauss Markov random field (GMRF) model for textured areas and allows an adaptive neighborhood system for edge preservation between uniform areas. In order to obtain the best possible texture reconstruction, an expectation maximization algorithm is used to estimate the texture parameters that provide the highest evidence. Borders between homogeneous areas are detected with a stochastic region-growing algorithm, locally determining the neighborhood system of the Gauss Markov prior. Smoothed strong scatterers are found in the ratio image of the data and the filtering result and are replaced in the image. In this way, texture, edges between homogeneous regions, and strong scatterers are well reconstructed and preserved. Additionally, the estimated model parameters can be used for further image interpretation methods

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:38 ,  Issue: 5 )