By Topic

Current-based hybrid analysis for surface-wave effects on large scatterers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. -S. Wang ; McDonnell Douglas Res. Lab., St. Louis, MO, USA

Current-based hybrid analyses combine the method of moments (MM) with Ansatz currents derived from high-frequency methods such as physical optics, physical theory of diffraction (PTD), geometric theory of diffraction (GTD), and the Fock theory. The author introduces an analysis that incorporates a surface-wave basis set into the hybrid formulation. This approach substantially improves the modeling of nonspecular effects caused by surface waves. The discussion emphasizes the accurate representation of surface wave currents and the reduction of computational efforts in comparison with the conventional MM techniques. Scattering calculations for bodies of revolution (BORs) and two dimensional surfaces demonstrate the effectiveness of the analysis presented for large scatterers

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:39 ,  Issue: 6 )