By Topic

Discovery and segmentation of activities in video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brand, M. ; Mitsubishi Electr. Res. Labs., Cambridge, MA, USA ; Kettnaker, V.

Hidden Markov models (HMMs) have become the workhorses of the monitoring and event recognition literature because they bring to time-series analysis the utility of density estimation and the convenience of dynamic time warping. Once trained, the internals of these models are considered opaque; there is no effort to interpret the hidden states. We show that by minimizing the entropy of the joint distribution, an HMM's internal state machine can be made to organize observed activity into meaningful states. This has uses in video monitoring and annotation, low bit-rate coding of scene activity, and detection of anomalous behavior. We demonstrate with models of office activity and outdoor traffic, showing how the framework learns principal modes of activity and patterns of activity change. We then show how this framework can be adapted to infer hidden state from extremely ambiguous images, in particular, inferring 3D body orientation and pose from sequences of low-resolution silhouettes

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 8 )