By Topic

Detecting independent motion: the statistics of temporal continuity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Pless ; Center for Autom. Res., Maryland Univ., College Park, MD, USA ; T. Brodsky ; Y. Aloimonos

We consider a problem central in aerial visual surveillance applications; detection and tracking of small, independently moving objects in long and noisy video sequences. We directly use spatiotemporal image intensity gradient measurements to compute an exact model of background motion. This allows the creation of accurate mosaics over many frames, and the definition of a constraint violation function which acts as an indicator of independent motion. A novel temporal integration method maintains confidence measures over long subsequences without computing the optic flow, requiring object models, or using a Kalman filter. The mosaic acts as a stable feature frame, allowing precise localization of the independently moving objects. We present a statistical analysis of the effects of image noise on the constraint violation measure and find a good match between the predicted probability distribution function and the measured sample frequencies in a test sequence

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 8 )