By Topic

Monitoring activities from multiple video streams: establishing a common coordinate frame

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, L. ; Artificial Intelligence Lab., MIT, Cambridge, MA, USA ; Romano, R. ; Stein, G.

Monitoring of large sites requires coordination between multiple cameras, which in turn requires methods for relating events between distributed cameras. This paper tackles the problem of automatic external calibration of multiple cameras in an extended scene, that is, full recovery of their 3D relative positions and orientations. Because the cameras are placed far apart, brightness or proximity constraints cannot be used to match static features, so we instead apply planar geometric constraints to moving objects tracked throughout the scene. By robustly matching and fitting tracked objects to a planar model, we align the scene's ground plane across multiple views and decompose the planar alignment matrix to recover the 3D relative camera and ground plane positions. We demonstrate this technique in both a controlled lab setting where we test the effects of errors in the intrinsic camera parameters, and in an uncontrolled, outdoor setting. In the latter, we do not assume synchronized cameras and we show that enforcing geometric constraints enables us to align the tracking data in time. In spite of noise in the intrinsic camera parameters and in the image data, the system successfully transforms multiple views of the scene's ground plane to an overhead view and recovers the relative 3D camera and ground plane positions

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 8 )