By Topic

Evaluation of task assignment policies for supercomputing servers: the case for load unbalancing and fairness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Schroeder ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; M. Harchol-Balter

While the MPP is still the most common architecture in supercomputer centers today, a simpler and cheaper machine configuration is appearing at many supercomputing sites. This alternative setup may be described simply as a collection of multiprocessors or a distributed server system. This collection of multiprocessors is fed by a single common stream of jobs, where each job is dispatched to exactly one of the multiprocessor machines for processing. The biggest question which arises in such distributed server systems is what is a good rule for assigning jobs to host machines: i.e. what is a good task assignment policy. Many task assignment policies have been proposed, but not systematically evaluated under supercomputing workloads. We start by comparing existing task assignment policies using a trace-driven simulation under supercomputing workloads. We validate our experiments by providing analytical proofs of the performance of each of these policies. These proofs also help provide much intuition. We find that while the performance of supercomputing servers varies widely with the task assignment policy, none of the above task assignment policies perform as well as we would like

Published in:

High-Performance Distributed Computing, 2000. Proceedings. The Ninth International Symposium on

Date of Conference: