By Topic

Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rong Chen ; Dept. of Stat., Texas A&M Univ., College Station, TX, USA ; Xiaodong Wang ; Liu, J.S.

A novel adaptive Bayesian receiver for signal detection and decoding in fading channels with known channel statistics is developed; it is based on the sequential Monte Carlo methodology that has emerged in the field of statistics. The basic idea is to treat the transmitted signals as “missing data” and to sequentially impute multiple samples of them based on the observed signals. The imputed signal sequences, together with their importance weights, provide a way to approximate the Bayesian estimate of the transmitted signals and the channel states. Adaptive receiver algorithms for both uncoded and convolutionally coded systems are developed. The proposed techniques can easily handle the non-Gaussian ambient channel noise. It is shown through simulations that the proposed sequential Monte Carlo receivers achieve near-bound performance in fading channels for both uncoded and coded systems, without the use of any training/pilot symbols or decision feedback. Moreover, the proposed receiver structure exhibits massive parallelism and is ideally suited for high-speed parallel implementation using the very large scale integration (VLSI) systolic array technology

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 6 )