Cart (Loading....) | Create Account
Close category search window
 

A 3-V monolithic SiGe HBT power amplifier for dual-mode (CDMA/AMPS) cellular handset applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pei-Der Tseng ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Liyang Zhang ; Guang-Bo Gao ; Chang, A.F.

A dual-mode (CDMA/AMPS) power amplifier has been successfully implemented by using a monolithic SiGe/Si heterojunction bipolar transistor (HBT) foundry process for cellular handset (824-849 MHz) applications. The designed two-stage power amplifier satisfies both CDMA and AMPS requirements in output power, linearity, and efficiency. At V/sub cc/=3 V,the power amplifier shows an excellent linearity (first ACPR<-44.1 dBc and second ACPR<-57.1 dBc) up to 28 dBm of output power for CDMA applications. Under the same bias condition, the power amplifier also meets AMPS handset requirements in output power (up to 31 dBm) and linearity (with second and third harmonic to fundamental ratios lower than -37 dBc and -55 dBc, respectively). At the maximum output power level, the worst power-added efficiencies (PAEs) are measured to be 36% for CDMA and 49% for AMPS operations. The power amplifier also tolerates severe output mismatch (VSWR>12:1) up to V/sub cc/=4 V, with spurs measured to be <-22 dBc in CDMA outputs at two specific tuning angles, but with no spur in AMPS outputs at any tuning angle.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:35 ,  Issue: 9 )

Date of Publication:

Sept. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.