By Topic

Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kemp, B. ; Center for Sleep & Wake Disorders, MCH Westeinde Hosp., Den Haag, Netherlands ; Zwinderman, A.H. ; Tuk, B. ; Kamphuisen, H.A.C.
more authors

Increasing depth of sleep corresponds to an increasing gain in the neuronal feedback loops that generate the low-frequency (slow-wave) electroencephalogram (EEG). The authors derived the maximum-likelihood estimator of the feedback gain and applied it to quantify sleep depth. The estimator computes the fraction (0%-100%) of the current slow wave which continues in the near future (0.02 s later) EEG. Therefore, this percentage was dubbed slow-wave microconfinuity (SW%). It is not affected by anatomical parameters such as skull thickness, which can considerably bias the commonly used slow-wave power (SWP). In the authors' study, both of the estimators SW% and SWP were monitored throughout two nights in 22 subjects. Each subject took temazepam (a benzodiazepine) on one of the two nights, Both estimators detected the effects of age, temazepam, and time of night on sleep. Females were found to have twice the SWP of males, but no gender effect on SW% was found. This confirms earlier reports that gender affects SWP but not sleep depth. Subjectively assessed differences in sleep quality between the nights were correlated to differences in SW%, not in SWP. These results demonstrate that slow-wave microcontinuity, being based on a physiological model of sleep, reflects sleep depth more closely than SWP does.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 9 )