By Topic

Influences of stimulation conditions on recruitment of myelinated nerve fibres: a model study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Veltink, P.H. ; Dept. of Electr. Eng., Twente Univ., Enschede, Netherlands ; van Alste, J.A. ; Boom, H.B.K.

The dependency of excitation of myelinated nerve fibres on nerve-fibre diameter, and the geometrical spread of recruited nerve fibres in the fascicle during artificial nerve simulations were investigated by varying parameters of a simulation model presented by P.H. Veltink et al. (ibid., vol.35, p.69-75, 1988). The model predicts that fascicle conductivities and the connective tissue sheath surrounding the fascicle, i.e., the extraneural tissue, together with the radius of the fascicle and the thickness of the connective tissue sheath, influence both recruitment order and geometrical spread of recruited motoneuron fibres in the fascicle. The model predicts recruitment probability to increase for increasing nerve-fibre diameter in the entire, or almost the entire range of stimulation pulse-amplitudes in all simulated cases. In a probabilistic sense, this implies an inverse order of recruitment compared to the physiological order.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:35 ,  Issue: 11 )