By Topic

Quantized feedback stabilization of linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brockett, R.W. ; Div. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; Liberzon, D.

This paper addresses feedback stabilization problems for linear time-invariant control systems with saturating quantized measurements. We propose a new control design methodology, which relies on the possibility of changing the sensitivity of the quantizer while the system evolves. The equation that describes the evolution of the sensitivity with time (discrete rather than continuous in most cases) is interconnected with the given system (either continuous or discrete), resulting in a hybrid system. When applied to systems that are stabilizable by linear time-invariant feedback, this approach yields global asymptotic stability

Published in:

Automatic Control, IEEE Transactions on  (Volume:45 ,  Issue: 7 )