By Topic

On the force control problem for flexible joint manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. W. Spong ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA

It is shown, using a singular perturbation model of the elastic joint manipulator dynamics and the concept of corrective control. how force control techniques developed for rigid manipulators can be extended to the flexible joint case. It is shown that the overall control law can be implemented in an inner loop/outer loop structure, where the inner loop is a nonlinear control that linearizes the system restricted to a suitable integral manifold in state space and the outer loop is a linear control that can be designed independently of the nonlinear inner loop, using any number of force control schemes designed for rigid manipulators to extend all of the standard techniques for force control of rigid manipulators to the flexible joint case, including hybrid position/force control, impedance control, or any other suitable design

Published in:

IEEE Transactions on Automatic Control  (Volume:34 ,  Issue: 1 )