By Topic

Image reconstruction from TE scattering data using equation of strong permittivity fluctuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianglei Ma ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Weng Cho Chew ; Cai-Cheng Lu ; Jiming Song

Compared to the TM case, the inverse scattering problem for the TE incident field is more complicated due to its stronger nonlinearity. This work provides an effective method for the reconstruction of two-dimensional (2-D) inhomogeneous dielectric objects from TE scattering data. The algorithm applies the distorted Born iterative method to the integral equation of strong permittivity fluctuation to reconstruct scatterers with high-permittivity contrast. Numerical simulations are performed and the results show that the distorted Born iterative method (DBIM) for strong permittivity fluctuation (SPF-DBIM) converges faster and can obtain better reconstructions for objects with larger dimensions and higher contrasts in comparison with ordinary DBIM. A frequency hopping technique is also applied to further increase the contrast

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 6 )