By Topic

Lane detection by orientation and length discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lai, A.H.S. ; Lab. for Intelligent Transp. Syst. Res., Hong Kong Univ., Pokfulam, Hong Kong ; Yung, N.H.C.

This paper describes a novel lane detection algorithm for visual traffic surveillance applications under the auspice of intelligent transportation systems. Traditional lane detection methods for vehicle navigation typically use spatial masks to isolate instantaneous lane information from on-vehicle camera images. When surveillance is concerned, complete lane and multiple lane information is essential for tracking vehicles and monitoring lane change frequency from overhead cameras, where traditional methods become inadequate. The algorithm presented in this paper extracts complete multiple lane information by utilizing prominent orientation and length features of lane markings and curb structures to discriminate against other minor features. Essentially, edges are first extracted from the background of a traffic sequence, then thinned and approximated by straight lines. From the resulting set of straight lines, orientation and length discriminations are carried out three-dimensionally with the aid of two-dimensional (2-D) to three-dimensional (3-D) coordinate transformation and K-means clustering. By doing so, edges with strong orientation and length affinity are retained and clustered, while short and isolated edges are eliminated. Overall, the merits of this algorithm are as follows. First, it works well under practical visual surveillance conditions. Second, using K-means for clustering offers a robust approach. Third, the algorithm is efficient as it only requires one image frame to determine the road center lines. Fourth, it computes multiple lane information simultaneously. Fifth, the center lines determined are accurate enough for the intended application

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:30 ,  Issue: 4 )