By Topic

Growth of InGaN self-assembled quantum dots and their application to lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Tachibana ; Inst. of Ind. Sci., Tokyo Univ., Japan ; T. Someya ; Y. Arakawa

We have successfully grown InGaN self assembled quantum dots (QD's) on a GaN layer, using atmospheric-pressure metalorganic chemical vapor deposition (MOCVD). The average diameter of the QD's was as small as 8.4 nm, and strong emission from the QD's was observed at room temperature. Next, we have investigated a structure in which InGaN QD's were stacked to increase the total QD density. InGaN QD's were formed even when the number of stacked layers was ten. As the number of layers increased, the photoluminescence (PL) intensity increased drastically. Moreover, we have fabricated a laser structure with InGaN QD's embedded into the active layer. A clear threshold of 6.0 mJ/cm/sup 2/ was observed in the dependence of the emission intensity on the excitation energy at room temperature under optical excitation. Above the threshold, the emission was strongly polarized in the transverse electric (TE) mode, and the linewidth of the emission spectra was reduced to below 0.1 nm (resolution limit). The peak wavelength was around 405 nm. These results indicate lasing action at room temperature.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:6 ,  Issue: 3 )